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Abstract. Brachytherapy (brachy being derived from a Greek word meaning short) is the
treatment by means of radioactive sources that are placed at short distances from the target cells.
This form of therapy is becoming common in the treatment of early stage prostate cancer, the most
common cancer and the second leading cause of cancer deaths among American males. We
consider the use of mixed-integer programming (MIP) models and branch-and-bound (BB)
methods to optimize the placement within the prostate of the radioactive ‘‘seeds’’ used in this
procedure. Several different optimization models are considered along with a number of branch-
and-bound strategies. With appropriate combinations of modelling and solution strategies, near-
optimal seed placements can be generated for each two-dimensional ultrasound section of the
prostate in less than five minutes on a 333-MHz workstation. The original three-dimensional
problem can then be solved by considering an appropriately interrelated sequence of these
two-dimensional problems.
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1. Introduction

Prostate cancer is the most common cancer and the second leading cause of cancer
death in American males. It is increasingly being treated with radiation therapy.
Radiation therapy is the treatment of malignant tumors with radiation (photons,
electrons, and heavy charged particles). Radiation can kill both normal and
cancerous cells or prevent them from growing and dividing. As these particles travel
through cells, they deposit energy through various particle interactions. DNA
molecules in human cells are double stranded and helical in nature. The energy
deposited by radiation can cause DNA breaks, and this is what is believed to be
primarily responsible for killing the cell. The repair mechanism of cancer cells is
less efficient than that of normal cells making them more susceptible to radiation.

Broadly, radiation therapy is sub-divided into teletherapy or external beam
therapy and brachytherapy. Brachytherapy is the clinical use of small encapsulated
radioactive sources at a short distance from or directly in the target volume for
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irradiation of tumors. The goal of radiation therapy is to deliver adequate dose to the
tumor region while simultaneously sparing sensitive structures and normal tissue.
Compared to conventional external beam therapy, the physical advantages of
brachytherapy result from a superior localization of dose to the tumor volume.
Interstitial brachytherapy is the implantation (temporarily or permanently) of
radioactive sources directly in the tumor volume, and is used to treat prostate, breast,
tongue, and gynecological cancers.

In this paper we focus on the application of interstitial brachytherapy to prostate
cancer using permanently implanted iodine-125 radioactive sources (commonly
referred to as ‘‘seeds’’). This is one of the most common applications of
brachytherapy; in fact, NIH (the National Institute of Health) estimates that the
number of prostate permanent radioactive implants performed each year will
increase from around 6000 in 1995 to more than 110 000 in the year 2005 given the
current rate of increase of detected cases and the aging population (BBIN, 1996).

Nearly all early stage prostate cancer patients can be appropriately treated with
either brachytherapy alone or brachytherapy combined with conventional external
beam radiation therapy. A detailed description of the seed implantation procedure
can be found elsewhere (Blasko et al., 1987; Grimm et al., 1994). Patients in whom
the cancer has spread to the capsule surrounding the prostate fare better with a
combination of seed implants and conventional radiation therapy. Other treatment
options include prostatectomy (removal of prostate by surgery). The advantages of
seed implantation over prostatectomy include the convenience of an outpatient
procedure, less normal tissue morbidity and the preservation of sexual function.

Effective implants require careful treatment planning based on ultrasound or
computed tomography images. Traditionally, interstitial brachytherapy treatment
planning has been a trial and error process in which a dosimetry expert tries to
improve an initial treatment plan (derived from geometrical properties of the
prostate) by iteratively changing (on the basis of expert judgement) the configuration
of radioactive sources within the target volume.

From a mathematical viewpoint, one can seek ‘‘optimal’’ seed configurations that
take into account a number of criteria, including radiation levels in the target volume
and in the nearby normal tissues. Optimization in seed implant brachytherapy thus
involves spatially distributing the seeds in order to try to achieve at least a
prescribed dose level over the target region while ensuring that the organs at risk
and normal tissues receive doses well below levels that may cause radiation injury.

The initial ultrasound ‘‘volume study’’ of the prostate generates 10–15 2-D
transverse images (‘‘slices’’) and is followed by development of the corresponding
brachytherapy treatment plan several days before the procedure. However, in a
clinical environment in which multiple patients’ treatments are planned for different
disease sites with limited computing power, only an hour or so can be devoted to the
determination of a single treatment plan. A second set of ultrasound images is
obtained on the day of the procedure. These images may not correlate perfectly with
the images acquired previously. Hence, the treatment plan may need to be
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reoptimized at the time of the implantation procedure. In this context the speed of
the optimization algorithm is again a key and necessary feature. The focus of this
work was to construct MIP models and to determine node selection, variable
selection, branching direction, and scaling strategies for branch-and-bound (BB)
search that would result in near optimal seed placement for typical two-dimensional
planar slices in less than 5 min of CPU time. The successful extension of this
methodology to the 3-D case via optimization in successive 2-D slices is described
briefly below and in D’Souza et al. (2001).

2. Geometry

The prostate gland is a chestnut-shaped structure about 40 mm across and 30 mm
thick that surrounds the beginning of the urethra, and is located below the urinary
bladder (Hole, 1993). Information on prostate volume and shape is obtained during
the ‘‘volume study’’ which is carried out with transrectal ultrasonography. Trans-
verse images (corresponding to planar slices) of the prostate are obtained at 5-mm
intervals from the base to the apex of the prostate. The number of transverse images
acquired is typically 10–15. Next, the target volume (prostate) is outlined on each
ultrasound image along with organs at risk (urethra and rectum) by the radiation
oncologist.

In this paper we demonstrate the robustness of the BB approach to optimum seed
placement by considering both an idealized phantom geometry and actual patient
data (additional patient data considered in D’Souza et al. (2001) yields similar
behavior in all cases). Because of the mechanics of the seed implantation procedure,

2the possible locations of the seeds correspond to the centers of a 5-mm grid that is
imposed on each transverse image. The dose calculation grid is finer than the seed
placement grid and for the phantom is an 803 80 region of 1-mm squares. Over this
fine grid, an 803 80 dose distribution matrix is pre-computed for each possible
source location using the American Association of Physicists in Medicine (AAPM)
Task Group 43 report (Nath et al., 1995) formalism for a point source (further
details are given below). The grid structure of the problem coupled with radiation
pre-computation allows replacement of the continuous nonlinear radiation model by
the linear-integer model that we employ in the BB approach (further details are
given below). In most cases, the total number of seeds implanted over all of the 2-D
sections can vary between 90 and 110, depending on the size of the prostate.

In the phantom shown in Figure 1, the target is simulated by a circular structure
with a radius of 20 mm. Located posterior to the target is a structure 13 mm in
radius and represents the rectum. Within the circular target area is a circular
structure, 3 mm in radius simulating the urethra. In addition, we introduced a subset
of the target, referred to as the transition region, 8 mm in radius which is
concentrically placed around the urethral region in the phantom. Sometimes, it is
desired that the target dose be raised above the normally prescribed level. While
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Figure 1. Simulated and clinical geometries.

most of the target (namely, the partial target, which is the target less the transition
region) receives this higher dose, it may be required that the dose to the portion of
the target near the urethra remains unchanged. The transition region is thus added so
that it receives less dose than the partial target region but enough to meet the
minimum dose criteria for the entire target. Thus, the purpose for the introduction of
the transition region is 2-fold: (i) to ensure a more gradual fall-off in dose from
regions in the target further away from the urethra to regions in the target closer to
the urethra, and (ii) to ensure that seeds are not placed too close to the region
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representing the urethra. The ‘‘full’’ target refers to the partial target plus the
transition region.

Figure 1 shows the actual anatomical configuration from a patient who was
subsequently treated with iodine-125 seed implants. This data was acquired from a
transverse ultrasound image towards the central part of the prostate. The prostate,
along with the organs at risk (urethra and rectum) were contoured. We also
contoured a transition region around the urethra. (The rectum appears as a semi-
circle in Figure 1 instead of a completed circle, because the ultrasound transducer,
while placed in the rectum, images only the upper half of the anatomy.) In this

2clinical data, the dose calculation grid is 1163 87 mm . The target in this case is
somewhat larger than for the phantom data, so the solutions require more seeds.
However, as discussed below, our computational experience in terms of evaluating
solution strategy alternatives was similar in the cases of phantom and clinical data
(and several other geometries that we considered), so the strategy choices we
determined are robust with respect to alternative geometries.

3. Radiation dose calculation

The Interstitial Collaborative Working Group (ICWG, 1990) and AAPM Task
Group 43 have devised a dose calculation formalism for the dosimetry of interstitial
brachytherapy (Nath et al., 1995). In reality, iodine sources are cylindrical in shape
with a physical length of 4.5 mm and a diameter of 0.8 mm. The radioactive iodine
is adsorbed on a silver rod 3 mm in length and encapsulated in a titanium capsule. In
the point source approximation, the dose depends only on the radial distance from
the center of the source. The unit of dose is Gray (Gy), where 1 Gy is defined as the
deposition of 1 Joule of energy in a 1-kg mass.

The dose rate at a distance r from a single source using the point source
approximation is given by:

S LkŸ ]]D(r)5 g(r)F (1)2 anr

21Ÿwhere D(r) is the initial dose rate (cGy h ) of the source, S is the (air kerma)k
2 21strength (U) of the source measured in units of U, where 1 U5 1 mGy m h as

recommended by the AAPM Report No. 21 (AAPM, 1987), L is the dose rate
21 21constant of the source (cGy h U ), r is the radial distance (cm) of a point of

interest from the source, g(r) is the radial dose function that accounts for the radial
dependence of dose on the transverse axis due to photon absorption and scatter in
the medium, F is the anisotropy factor and is approximated by a constant in thean

point source dose formulation (Nath, 1995; Nath et al., 1995). For iodine-125 the
21 21values of these parameters are: L5 0.88 cGy h U , F 5 0.993. For purposes ofan

simplicity we used a source strength S of 1 U. The radial dose function used fork

iodine-125 is a fitted fifth-order polynomial of the form:
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2 3 4 5g(r)5 a 1 a r 1 a r 1 a r 1 a r 1 a r (2)0 1 2 3 4 5

and the coefficients of the fit are a 5 1.01376, a 5 0.122747, a 520.173025,0 1 2

a 5 0.0402378, a 520.00385227, a 5 0.000134283. The dose rate calculated3 4 5

using the point source approximation on the transverse axis (perpendicular to the
axis of the cylindrical source) in the medium is lower than the actual close rate by
3–9% for most interstitial brachytherapy sources (Nath et al., 1995).

The total dose over time to tissue from a permanent radioactive implant is given
by integrating the dose rate, taking into account the half-life T of the radioactive1 / 2

source:
` 20.693tŸ ]]]D(r)5E D(r) exp dt (3)S DT0 1 / 2

where T is the time it takes for the source to exponentially decay to one-half of1 / 2

its original strength (59.6 days for iodine-125). Even though sources are permanent-
ly implanted within the tumor volume most of the radiation dose is delivered during
the first five half-lives (|300 days for iodine-125). Carrying out the integration in
Equation (3), the total dose from a permanently implanted source is:

ŸD(r)5 1.44T D(r) (4)1 / 2

4. MIP models for prostate seed implants

Methods for optimization of prostate implants include fast simulated annealing (SA)
(Pouliot et al., 1996), genetic algorithms (GA) (Yu et al.(s), 1996; Ezzell(s), 1996;
Yang, 1998) and branch-and-bound (Gallagher et al., 1997; Lee et al., 1999). Fast
simulated annealing has been used by Pouliot et al. to optimize the dose distribution
by finding the best seed distribution through the minimization of a cost function
which includes constraints on the dose at the periphery of the planned target volume
and on the dose uniformity within this volume. Yu et al. have developed a genetic
algorithm for prostate implants in which the objective function is comprised of
separable cardinal utility terms. SA and GA techniques cannot provide the solution
guarantees that are possible with BB. Gallagher and Lee’s model is three-dimension-
al but imposes constraints only at sampled points in the region. Here we consider
quasi-independent two-dimensional slices and impose constraints at all relevant
points.

The focus of this work is mixed integer models for prostate seed implant
brachytherapy using the branch-and-bound technique and strategies influencing the
outcome of the solution process. The Mixed Integer Program (MIP) model that we
used can be represented as follows:

minimize cx 1 dy

subject to Ax 1By > b

y binary,
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where each binary variable y corresponds to the placement or non-placement of aP

seed in a particular location. The possible seed locations are designated by the use of
the ultrasound template. Seeds can only be placed within the target. The placement
of a seed in a particular location contributes radiation dose to each point in the dose
computation grid.

If y is the binary (0 /1) variable indicating the presence or absence of a seed in aP

particular grid location P within the full target then the total dose D delivered byij

all seeds to a point (i, j) in the grid is given by:

N
PD 5 O y D (5)ij P ij

P51

Pwhere D is the dose contribution from seed at grid location P, and N is the numberij

of possible seed positions (in our examples N varies from 50 to 90). Consider Figure
2 for example. If seeds are present in the pixel locations as shown in Figure 2, then
the dose to a pixel (i, j) in the two-dimensional matrix is the sum of the doses from
individual seeds 1, 2, and 3 to pixel (i, j).

The primary goal in prostate seed implant brachytherapy is to deliver a certain
minimum dose to the prostate gland while minimizing the dose to organs at risk
such as the urethra and rectum. Hence a lower bound, T is placed on the dose to thel

(partial) target while upper bounds U and R are placed on the dose to the urethrau u

and the rectum. In brachytherapy, there is a strong dose gradient, over the tumor
volume, i.e., the dose is very high at points close to the source and decreases rapidly
as the distance from the source increases. This is because the dose contribution to a
point is inversely proportional to the square of the distance from the source. Hence,

2the r term dominates in (1) when r is less than 1 mm. Thus, there is no upper
bound on the dose to the target. The above-mentioned constraints can be stated as

Figure 2. Total radiation dose to each point (i, j) in the grid is obtained by summing
contributions from the seeds.
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D > T ;(i, j)[ Tij l

D > S ;(i, j)[ Sij l

D <U ;(i, j)[Uij u

D <R ;(i, j)[Rij u

where T, S, U, and R represent the (partial) target, transition region (remainder of
the target), urethra and rectum respectively. The values used for the upper and lower
bounds (in units of Gy) are as follows: T 5 145, S 5 140, U 5 240, and R 5 112.l l u u

We considered several objective functions in our research. In the first objective
function (see model 1 below), the mean dose to the urethra was minimized subject to
the above constraints. The urethra is considered the primary organ at risk and
therefore minimizing the dose to the urethra is of great importance. The mean dose
to the urethra can be stated as:

o Di, j[U ij
]]]meandose5 , (6)

uU u

where uU u denotes the number of pixels in the urethra. (While this is mathematically
equivalent to minimizing total dose to the urethra, mean dose is of greater clinical
interest.)

The second objective function (see model 2 below) involved minimizing the total
underdose (relative to the prescription target dose). This can be represented as

minOO z (7)ij
i j

with the additional constraint

D 1 z >T ;(i, j)[ T (8)ij ij l

where T is the dose prescribed to the target and z is a continuous nonnegativel ij

variable representing underdose (relative to the prescription dose). The optimization
process ensures that a penalty is introduced only if the target dose at a point is less
than the prescription dose. This is thus essentially a feasibility problem, since (in
most cases) we are able to find solutions with all z 5 0. (In principle, a penalty canij

be assigned if the target dose exceeds a certain threshold level (e.g., 1.53 T ) inl

order to achieve a certain degree of dose homogeneity over the target region.
However, it is not clear if dose homogeneity is preferred in prostate seed implants or
if dose heterogeneity provides better tumor control, so here we penalize only
underdose.)

An MIP model was also constructed seeking to minimize the total number of
seeds utilized to achieve the desired dose distribution. Minimizing the number of
seeds is desirable in order to reduce the level of trauma induced in the prostate
gland. However, instead of minimizing the total number of seeds in the objective
function, an upper bound was placed on the number of seeds:
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O y <maxseed , (9)P
P

where maxseed is the maximum number of seeds allowed. If this upper bound is not
set too low, reasonable solution times are obtained as will be discussed below.

The constraints and the objective functions for the two principal models used are
formulated below. Model 1 (urethra objective, hard bound on target):

o D(i, j )[U ij
]]]]min

uU u
N Psubject to D 5o y D ;(i, j)ij P51 P ij

D >T ;(i, j)[ Tij l

D > S ;(i, j)[ Sij l

D <U ;(i, j)[Uij u

D <R ;(i, j)[Rij u

o y <maxseedP P

y [ 0,1 ;PP

Model 2 (feasibility objective, soft bound on target):

min o o z ;(i, j)[T, Si j ij

N Psubject to D 5o y D ;(i, j)ij P51 P ij

D 1 z > T ;(i, j)[Tij ij l

D 1 z > S ;(i, j)[ Sij ij l

D <U ;(i, j)[Uij u

D <R ;(i, j)[Rij u

o y <maxseedP P

y [ 0,1 ;PP

z > 0 ;(i, j)[Tij

Finally, we also experimented with a composite objective function constructed by
weighting objective 1 by a factor a , 1 and objective 2 by 12a and adding the
two weighted objective functions, using the ‘‘soft’’ underdose constraint defining
the variables z as opposed to a strict lower bound on the target dose. Thus theij

composite objective function is a 3 objective 11 (12a)3 objective 2. As dis-
cussed below, an appropriate choice of a produced good results (from the
standpoint of both objectives) in a reasonable time.

5. Branch-and-bound strategies

Branch-and-bound is a global optimization technique that recursively partitions
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relaxations of the feasible set. For the problem of prostate seed implant optimi-
zation, a number of different strategies were explored in conjunction with the
General Algebraic Modeling (GAMS) language (Brooke et al., 1997) and the
CPLEX mixed integer programming solver. We provide a brief description of the
various GAMS/CPLEX strategies explored. Table 1 summarizes these strategy
options and the combinations of options that we found effective. Strategy 1 provided
good results in all cases and is the focus of most of the discussion below.

Branching direction: By default, the CPLEX algorithm will use the magnitude
of the branching variable’s integer infeasibility to decide whether to process next the
up or down branch. Alternatively, this option forces the consistent selection of either
the up or down branch.

Node selection: We investigated three node selection strategies: (1) depth-first
search, (2) best-bound search, and (3) best-estimate search. The depth-first search
strategy tends to limit the selection of the next node to one of the two descendants of
the current node in the branch and bound tree. The successor node is more
efficiently defined since only a single additional lower or upper bound need be
specified. While depth-first search results in faster per-node processing times, each
branch may be exhaustively searched to the deepest level before fathoming it in
favor of better branches, thus consuming considerable time.

The best-bound or best-node search selects the unfathomed node with the best
objective function value (or ‘‘best-bound’’). The best-estimate search uses estimates
of the objective function value that would be obtained if all integer variables were
forced to integer values. Both best-bound and best-estimate strategies result in more
breadth-first tree development.

Variable selection: Three variable selection strategies were explored: (1)
branching on the variable with minimum infeasibility, (2) branching based on
pseudo-reduced costs, and (3) strong branching. Branching on a variable with

Table 1. Summary of BB options and effective strategies. All strategies listed make use of
the pseudo-cost variable selection search

Node selection Variable selection Branching direction Scaling
(ns) (vs) (br) (s)

Best-bound (bb) Minimum infeasibility Up branch (up) Equilibrium scaling (0)
(mi)

Best-estimate (be) Pseudo-cost (pc) Down branch (dn) Aggressive scaling (1)
Depth-first (df) Strong branching (sb) Algorithm (alg)

Strategy 1 ns5 bb, br5 alg, s5 1
Strategy 2 ns5 bb, br5 dn, s5 0
Strategy 3 ns5 bb, br5 dn, s5 1
Strategy 4 ns5 bb, br5 up, s5 0
Strategy 5 ns5 bb, br5 up, s5 1
Strategy 6 ns5 be, br5 dn, s5 0
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minimum infeasibility may lead more quickly to a first integer feasible solution, but
will usually be slower overall to reach the optimal integer solution. The pseudo-
reduced costs represent an estimate of the penalties associated with integerizing
variables, and thereby tend to identify ‘‘important’’ variables for branching. Strong
branching attempts several branches at a node and proceeds with the ‘‘best’’ such
branching.

Scaling: The influence of various types of scaling on the problem matrix was
noted. The model was run with no scaling, standard scaling and modified, more
aggressive scaling. Standard scaling uses an equilibrium scaling method that is
generally very effective. Aggressive scaling can produce improvements on some
problems and can be used if a particular problem has difficulty staying feasible
during the solution process.

6. Software interfaces

Using MATLAB, the set of dose distribution matrices corresponding to possible
2seed locations was pre-computed in two dimensions over an 803 80-mm grid (for

the phantom data case, with a slightly different grid being used for clinical data)
using a pixel resolution of 1 mm in each direction. We selected a pixel resolution of
1 mm because the dose drops off very rapidly in brachytherapy. Using a coarser
resolution would result in the loss of dose gradient information which will result in a
dramatic difference in the optimization.

GAMS is a high-level modeling system for mathematical programming problems.
It consists of a language compiler and a suite of integrated high-performance
solvers. GAMS is tailored for complex, large scale modeling applications, and
allows the construction of large maintainable models that can be adapted quickly to
new situations. The data generated within MATLAB was transferred to GAMS
using MATLAB-GAMS interfacing software (Ferris, 1998). The solver used in
conjunction with GAMS was CPLEX. The CPLEX MIP algorithm is an im-
plementation of a branch-and-bound search with many algorithmic options to be
considered below. The solution obtained was returned into the MATLAB workspace
where it was visualized.

Branching direction, scaling, node selection and variable selection strategies were
varied and the problem was run with different combinations of branch-and-bound
solving options. The two objective functions and their corresponding constraints as

TMdescribed above were considered. The model was run on a SunSPARC Ultra 10
workstation which has a clock speed of 333 MHz and 256 MB RAM. In each case
the CPU time, the branch-and-bound tree node count, the best integer solution, and
the lower bound of the relaxation were recorded. In addition, the maximum,
minimum and mean doses to the target region and organs at risk and the total
number of seeds were also noted. The relative optimality gap for model 1 (which
minimizes urethral dose) was pre-set to 3%. The relative gap (rg) is defined as the
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ratio of the absolute value of the difference between OBJ, the value of the best
integer solution found and LB, the relaxation (lower bound) over the lower bound,

uOBJ2LBu
]]]]rg5 (10)LB

We investigated the effect of the relative gap on the solution time only for model 1.
Model 2 (minimizing target underdose) was run to optimality in all cases.

Based on the final dose distribution, isodose lines were constructed. Isodose line
displays are analogous to topographical maps. They are formed by connecting points
on a two-dimensional grid that receive equal dose. With the help of an isodose line
display, the radiation oncologist is able to confirm how well the prescription dose
conforms to the target boundary while also examining the doses received by the
urethra and the rectum. It is also possible to spatially identify regions within the
target or organs at risk that receive excessively high or unacceptably low doses.

7. Results and discussion

Both optimization models led to clinically interesting and somewhat different
results, and additionally displayed rather different computational behavior. This
section summarizes these differences.

The MIP relative gap tolerance has a significant impact on the solution time of
model 1 (minimizing urethra dose) as can be seen from Figure 3. Although this was
noted for all strategies, only three are illustrated in Figure 3. The strategies shown
utilize best bound node selection, pseudo-cost variable selection, aggressive scaling
and only vary in the choice of the branching direction. As the relative gap is
reduced, the solution time increases in a non-linear manner but rate of increase
varies depending on the solving strategy used. Dose computation algorithms in
brachytherapy, such as the one used in the work described here are accurate to
within 5%. Termination with a non-zero relative gap of a few per cent is
appropriate. For most of the cases, we set the relative gap within the GAMS
modeling language to 3%. A further decrease in this parameter was considered
unnecessary due to the accuracy limits of the dose calculation method and the
tremendous increase in time for a non-significant increase in the quality of the
solution (see Figure 3). For testing purposes, model 1 was actually run to a proven
optimal value of 136.9032 (phantom data), but this required 4864 cpu seconds.

In general, we found that the best-bound node selection strategy and pseudo-cost
variable selection strategy provided the best results. In the tables listed, we have
only included solution strategies that generally performed well with the models
previously described and with different stopping criteria (relative gap size) for model
1. Overall, the depth-first search and best-estimate search node selection strategies
did not provide solutions in reasonable amounts of time although the best-estimate
search did perform well in certain individual instances. Variable selection strategies
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Figure 3. Effect of the relative gap between the current objective function value and the
lower bound of the LP relaxation of the MIP problem. The time as a function of the relative
gap is shown for three different strategies all of which use best bound node selection
strategy, pseudo-cost variable selection strategy, aggressive scaling but which vary in the
branching direction strategy at each node. Strategy 1 – algorithm decides branching
direction; Strategy 2 – down branch selected first; Strategy 3 – up branch selected first.

such as branching on a variable with minimum infeasibility and strong branching
generally resulted in an enormous cpu time.

Table 2 shows the results obtained with clinical data. Included in the table is a
symbolic description of the strategy employed, the best integer solution (mean
urethra dose), lower bound of the LP relaxation, cpu time, number of nodes
generated and the relative gap at the time of termination of the solution process.
Table 3 lists the results obtained by minimizing the total underdose to the target
(model 2) with clinical data (similar results were obtained with phantom data).

Model 2 was run to optimality while model 1 was terminated when the relative
gap was less than or equal to 3%. For this reason there are no entries for the best
integer solution, lower bound and relative gap for model 2 in Table 3. The solutions

Table 2. Branch-and-bound solution strategies (relative gap set at 3%) yielding near
optimal solutions with clinical data in less than 15 min of CPU time. The objective is to
minimize the mean urethra dose (model 1). Listed in the table is the integer solution at the
time of termination

B-and-B strategy Integer solution Lower CPU time Node count Relative gap
bound (s)

Strategy 1 139.7917 136.3 288 1865 2.6%
Strategy 4 139.1145 136.3 849 8014 2.0%
Strategy 5 139.1145 136.3 871 8014 2.0%
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Table 3. Branch-and-bound solution strategies yielding optimal solutions with clinical
data. The objective is to minimize the total target underdose (model 2)

B-and-B strategy CPU time (s) Node count

Strategy 1 122 1240
Strategy 2 637 6393
Strategy 3 47 447
Strategy 4 25 289
Strategy 5 652 10402
Strategy 6 51 647

for model 2 are obtained in far less computing time than the near-optimal solutions
for model 1. Placing an upper bound on the number of seeds in model 1 increased
the cpu time relative to no upper bound. Due to the amount of information present in
the tables we selected a strategy (which uses best-bound node selection, pseudo-cost
variable selection, aggressive scaling and branching direction decided by the
algorithm) referred to as strategy 1 below to illustrate the salient points.

Strategy 1 uses 272 cpu seconds and 4288 nodes to arrive at a feasible solution
using model 1 (phantom data) with an upper bound of 18 placed on the total number
of seeds. The relative gap between the final integer solution and the corresponding
LP solution is 1.8%. Recall that model 1 was run to optimality in this case and the
optimal solution obtained was 136.9032. In the clinical case (see Table 2) where an
upper bound of 25 is placed on the number of seeds, a good solution is achieved in
288 cpu seconds with a node count of 1865 and a relative gap of 2.6%. The target in
the clinical data is larger than in the phantom and a greater number of seeds are
needed in order to meet the minimum dose criterion within the target region.

It was found that scaling affects the speed with which a feasible solution is
achieved. Aggressive scaling led to a quicker solution with the best-bound node
selection search, pseudo-cost variable selection and branching direction at each node
decided by the CPLEX MIP algorithm. Similarly, an equilibrium scaling method
provides a solution quickly with the best-estimate node selection search, pseudo-cost
variable selection and downward branching direction selected first at each node
while other scaling methods fail with this strategy.

The branching direction can significantly impact the solution times when using
model 1. The down branch resulted in undesirably long solution times for clinical
data and therefore is not listed in Table 2. From Table 3, it can be seen that the
aggressive scaling method fairs extremely well when the down branch is selected
first while the equilibrium scaling method does better when the up branch is first
picked. Figure 4 summarizes graphically the computing times for the two models
and the phantom and clinical anatomies.

It was found that the maximum dose to the structure simulating the urethra in the
phantom (OR1) and the urethra itself in the clinical data was considerably lower
(20–40%) for model 1 as compared with model 2. Model 1 does in fact seek to
drive the dose to the constraint on the target. The emphasis in model 2 is on pushing
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Figure 4. Graphical representation of computing times achieved through viable branch-and-
bound search strategies in brachytherapy treatment optimization.

the dose to the target above the minimum criterion while maintaining an upper limit
on the dose to the critical organs. Hence, in model 2 there is no objective term
forcing down the dose to the critical organs.

Again, we will select strategy 1 to elaborate on the above mentioned points.
Since the minimum dose criteria is satisfied by both models and the minimum dose
to the full target is almost the same, we will not focus on the target dose in this
discussion. It is important to mention that the minimum full target dose is 0–7 Gy
higher when using model 2 as compared with model 1. We will place the emphasis
on the difference in the maximum doses received by the organs at risk between the
two models. Table 4 lists the doses to the regions in the phantom and clinical data.
Figures 5 and 6 contrast isodose plots (dose distribution maps) for a solution based
on urethra dose minimization with a solution based on target underdose minimiza-
tion (using in both cases strategy 1 with an upper bound of 25 placed on the number
of seeds). The prescription dose for treatment of prostate cancer using permanent
seed implant brachytherapy is 140 Gy; shown on the isodose plots are the 280-,
168-, 140-, 98-, 70- and 14-Gy isodose lines corresponding to 200, 120, 100, 70, 50
and 10% of the prescription dose. Also indicated on these isodose plots are the
positions of the seeds. With isodose plots it is possible to identify ‘‘cold spots’’ as
well as ‘‘hot spots’’ within the anatomical region. ‘‘Hot spots’’ and ‘‘cold spots’’
are not absolute but relative terms used in radiation therapy. A ‘‘hot spot’’ refers to
an area receiving much higher dose when compared to other regions while a ‘‘cold
spot’’ refers to an area receiving a much lower dose relative to other regions or
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Table 4. Dose to regions within phantom and clinical anatomy; results of Strategy 1
applied to model 1 (urethral dose minimization) and model 2 (target underdose minimiza-
tion)

Trial Minimum Maximum Mean Maximum
full target OR1/urethra OR1/urethra OR2/rectum
dose (Gy) dose (Gy) dose (Gy) dose (Gy)

Model 1 141.4 144.2 138.3 109.0
(phantom)

Model 2 146.2 213.4 162.9 104.2
(phantom)

Model 1 141.9 144.4 139.8 109.5
(clinical data)

Model 2 145.6 208.1 167.6 111.9
(clinical data)

relative to other areas within the same region. In general ‘‘hot spots’’ near critical
organs are to be avoided and ‘‘cold spots’’ interior to the target are undesirable.
Figures 5 and 6 show ‘‘cold spots’’ in and surrounding the urethra and extending
into the transition region but the shape of these ‘‘cold spots’’ is different in the two
treatment plans. The ‘‘cold spot’’ in the urethra dose minimization case (Figure 5)
extends beyond the transition region and into the target region, but it is important to
reiterate that the full target region (partial target and transition region) does receive
at least prescription dose.

For clinical data with urethra dose minimization (model 1), the maximum and
mean doses to the urethra are 144.4 and 139.8 Gy respectively, whereas for target

Figure 5. Isodose line display for clinical data with an upper bound of 25 on the number of
seeds (mean urethra dose minimization).
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Figure 6. Isodose line display for clinical data with an upper bound of 25 on the number of
seeds (target underdose minimization).

underdose minimization (model 2), the maximum and mean doses to the urethra are
208.1 and 167.6 Gy respectively. With the composite objective function described
above, which is a weighted combination of the objectives of model 1 and model 2,
we found that a weight of 0.8 yielded a solution that came acceptably close to the
target dose bound (see Figure 7), yet came close to the low mean urethra dose in
model 1. The solution time for this objective was in between the times for the two
individual objectives. Note that care is needed in the choice of a in order to obtain
high quality solutions within a clinically acceptable time frame. Composite
objectives that include both of the above terms plus additional terms such as the
number of seeds are considered in D’Souza et al., 2001.

8. Summary and conclusions

Mixed integer programming models for ultrasound guided prostate seed implant
brachytherapy were presented and successfully solved via branch-and-bound meth-
ods. Model 1 focused on minimizing the dose to organs at risk and is computational-
ly more expensive. Model 2 focuses on target dose, and is faster to solve, but the
dose received by the critical structure is higher than with model 1. A composite
objective with carefully chosen relative weights for the two objective terms led to
low doses to the critical structure in a computing time that was in between the times
required for models 1 and 2. Since the time taken for the optimization process is an
important parameter in a clinical setting, one has to weigh the results presented in
this paper and decide if a faster solution time is worth the extra dosage to the organs
at risk.

From the standpoint of solution quality, introducing a ‘‘transition region’’
between the urethra (OR1) and the rest of the target region did help in reducing the
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Figure 7. Effect of composite objective function of the form a 3 obj11 (12a)3 obj2
where obj1 is the objective function that seeks to minimize the mean dose to the urethra and
obj2 seeks to minimize the underdose to the target. Strategy 1 and Strategy 2 both employ
best bound node selection, pseudo-cost variable selection, aggressive scaling. Strategy 1
allows the algorithm to choose the branching direction while Strategy 2 selects the down
branch at each node. (Note that the times are plotted on a log scale).

dose gradually across from the target to the urethra. More complex models for
constraining the dose gradient between these two regions are now under considera-
tion. Even though the prescribed target dose was achieved using both models, the
location of the seeds used to deliver the desired dose distribution is different and
depends on the model used and the number of seeds allowed in the target region.
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Lowering the number of seeds below a certain level may result in undesirable
solutions (‘‘hot spots’’ in the critical structures) and may be computationally
expensive.

We have presented a summary of the solution strategies that performed well with
all models. In general, the best-bound node selection search and pseudo-cost
variable selection search provided the best results. Other node selection strategies
such as best-estimate search and depth-first search did not lead to good solution in a
desirable amount of time. Variable selection strategies such as branching on a
variable with minimum infeasibility and strong branching fared poorly. In all cases,
the following strategy was successful: best-bound node selection, pseudo-cost
variable selection, aggressive scaling and branching direction decided by the
algorithm. However, as seen from the results, several other viable strategies also
emerged.

While the results here focus on the application of BB to single two-dimensional
slices, we have demonstrated (D’Souza et al., 2001) that this approach may be
successfully extended to three dimensions by using the techniques of this paper on
an appropriate sequence of 2-D problems. That is, for each 2-D slice, we first
generate a radiation contribution to that plane from the remaining planes, and then
optimize the seed placements in the current plane taking into account the radiation
already provided by interplane contributions. Seed positions are thus computed for
successive slices until the variation in seed positions becomes sufficiently small. As
described in D’Souza et al., 2001 this sequential approach, coupled with appropriate
initializations and controls over the 2-D optimizations, yields full 3-D solutions in
about 30 min on a 333-MHz processor.
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